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ABSTRACT

Electronic contributions to the optical properties of small silicon

clusters are examined. Geometries and the electronic structures of the

clusters are established using the tight-binding model, and linear as well as

nonlinear polarizabilities of the clusters are evaluated using one-electron

density matrix techniques. Kleinman 's conjecture for hyperpolarizabili-

ties is shown to be violated in the frequency-degenerate case. which is of

practical importance. The nonlinear polarizabilities are found to depend

primarily on the symmetry of the cluster and prove to be high for the low-

symmetry clusters. Possible experiments and applications are discussed.
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1. INTRODUCTION

Small semiconductor clusters in the range from a few atoms to tens of atoms are of a

great interest from the viewpoint of both fundamental science,1  . and applications.' 5 - '

Their physical properties (symmetry, electronic structure, optic-al spectra and transition

probabilities) differ significantly from those of the solid state both in bulk and at surface,

and also from the properties of nanoscale structures, such as quantum dots. Linear and

nonlinear optical properties of the latter have been shown to depend strongly on their

size in the region of quantum confinement (see. e.g., Refs. 5, 9 and 10). But in these

and similar works the bulk electronic structure of the semiconductor is usually assumed

and modelled by free electrons with effective mass. Obviously, this approach is valid

only for sufficiently large objects with sizes not less than a few nanometers, containing

on the order of 1000 atoms or more.

In the present work, for the first time, the optical properties of small silicon clusters

with 7 - 13 atoms are predicted. For such clusters, the bulk approximation is not valid

and the detailed structure becomes important. Much work has been done on the struc-

ture of silicon clusters, both experimentally for stability and photofragmentation ' ,21

and for optical absorption, [3'") and theoretically with ab initio type calculations for

smaller[11- 13] and with other methods for larger[14 - 19l systems. The approach we use

in this paper is based upon the semiempirical tight-binding (TB) model. This model is

relatively simple, thus allowing the global optimization of the geometry even for compar-

atively large clusters. Moreover, the TB model couples the geometry to the electronic

structure, which we find essential, but which usually is ignored for larger systems. '4.15)

In the previous paper of some of the authors,171 the TB model was used to find the
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isomers of Sil 0 , and especially, to trace such subtle effects as Jahn-Teller distortions in

geometry. Also, the same method has been succesfullv used to reproduce the ab initio

geometries of other small Si clustersI18 '191 and to predict chemical properties of larger

clusters.t16 ] The success of the TB model is due to fitting the parameters of the model

to reproduce the band structure of bulk siliconL201. thus establishing a semiempirical

basis for reliable calculations of the electronic states.

With the TB geometry and electronic structure and using one-electron density matrix

techniques, we obtain closed sum-over-one-electron-states expressions from which lin-

ear and nonlinear optical polarizabilities of clusters are subsequently computed. These

characteristics govern a number of observable effects: light scattering and absorption by

clusters, second harmonic generation, optical rectification, birefringence induced by op-

tical fields and the Kerr effect, phase conjugation, nonlinear corrections to the refraction

index, etc.

We show that the nonlinear optical response of a cluster depends mainly on its

symmetry and only secondarily on its size, and for low-symmetry clusters the optical

nonlinearities prove to be rather high. We attribute such enhancement to a pronounced

optical rectification effect.

Small clusters are promising for various applications. The "surface-to-bulk" ratio is

extremely large for such clusters, which should imply their increased chemical reactiv-

ity, and catalytic and photocatalytic efficiency. Also, the clusters may find numerous

applications as materials for nonlinear optics, including optical information processing,

provided one is able to accumulate them in some matrices like zeolites, which form
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large (on the molecular scale) cages.,," The optical applications of the clusters are based

upon their enhanced optical hyperpolarizabilities. Due to small sizes of the clusters, the

response times of the optical nonlinearities are expected to be very short. probably on

the femtosecond scale.

The next section contains a description of the TB method and the derivation of

closed expressions for optical responses with the use of one-electron density matrix

techniques. In Sec. 3 the numerical results for these responses are given. Section 4

contains discussion of the obtained results and underlying physical principles, and also

suggestions for possible experiments.

J:

ty
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2. THEORY

The semiempirical tight-binding (TB) model that we use is based on a model Hamil-

tonian including only nearest-neighbor interactions between the atoms in the cluster

and the matrix elements fitted to experimental data. Here, we adopt the model and

fit to the bulk Si band structure by Chadi. I who used the model for surface studies.

We also include the extensions by Tomanek and SchliitertSl to incorporate the detailed

interatomic repulsions and coordination dependency in the cohesion of small clusters.

We write the TB Hamiltonian as

ba (a vb

where at and at, are electron creation and annihilation operators in the basis Jiia) -

Oa(r - R.), with POa = {3s, 3pz,3py,3pz} as the valence orbitals of silicon atom at the

sites p with coordinates R,. The basis jIa) is not strictly orthonormal, but we neglect

the intersite overlap for all operators except the Hamiltonian. In particular, we write

the overlap matrix as

\vba (2)

in the diagonalization procedure. This is usually called the orthogonal TB.

To reproduce the bulk silicon band structure with the nearest-neighbor distance 2.35

A, the diagonal matrix elements of the Hamiltonian (1) were fitted[201 to the values EO

= -5.25 eV and 6, = 1.20 eV, and the off-diagonal elements to Vs,, = -1.938 eV, Vp,

- 1.745 eV, Vp, = 3.050 eV and Vpp, = -1.075 eV. The off-diagonal matrix elements

were taken to behave Slater-Koster-like[21) in their angle and distance dependence, and
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so their bond length dependence is 1 /r2 until 3.3 A. where we consider the bond to be

broken.1 71

The diagonalization of the Hamiltonian gives the one-electron energies E.P and the

eigenvectors CP. Thus. we can write the one-electron states of the occupied and unoc-

cupied valence levels as

,P) = -",Aa) (3)

and the cohesion energy of the N atoms due to the bond formation, which we call the

"band structure" energy, can be written as

E0Y - '% € U0 0q )2E NS n Pp - AT noro - U j:(qk, - q 0) (4)

p a

0where nP and na are occupation numbers, and the difference between the two first terms

is the stabilization energy of the four free-atom valence levels e' due to the bonding.

The third term in Eq. (4) is added to include the intra-atomic Coulomb repulsion caused

by charge transfer within the cluster, and it is evaluated using the Mulliken charges q,

and qo, with the cnnstant U taken to be 1 eV. ['8 1

A repulsion energy term is finally added to account for the structure of small clusters.

It is the sum of interatomic pair potentials Ed(R,,) and a term depending on the bond

number Nb,

ER = Ed E(R,,) -N b + 2c2 b)+C3](5N~~ r/ T 2  N T

This term has been fitted l"I within the present TB model to reproduce the bulk cohesion

energies 4.64 eV and 4.24 eV for the diamond and FCC structures, respectively, and

the ab initio potential curve of the silicon dimer. This leads to constants cl = 0.225
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eV. c- = 1.945 eV and c3 = -1.03 eV. which therefore set the second term to zero for

Si2 . Finally, the total cohesion energy of the cluster is written as a sum of the band

structure energy EBS and the repulsion energy ER,

ECh = -(EBS - ER) , (6)

which is maximized to find the structures of the Si clusters in the present work.

The orthonormality approximation (2) is usually adopted to also derive the matrix

elements of multipole operators (see, e.g., Ref. 22). Then the dipole transition matrix

elements (r)pq, which we need to evaluate the optical properties, can be written as

(r)pq = Y C;4 C p O.R4 - 1: C;MbCpga(r)ab (7)
.a g a b

where the atomic transition matrix elements are

(r)ab = f ;(r) r 'P(r) dr (8)

The first term in Eq. (7) is Mulliken-like and diagonal in the atomic basis, and it

can be evaluated directly from the TB eigenvectors and nuclear coordinates R,.. It,

the system of noninteracting atoms, this term vanishes and the second term gives the

sum of the atomic displacement polarizations, which is proportional to the size of the

system. In the Appendix we show that the first term is nonzero only when the atomic

wavefunctions overlap and delocalized molecular one-electron states are formed. Hence,

the first term in (7) is identified to give the charge transfer or molecular displacement

polarization contribution to the transition matrix element.
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The second t'erm. on the other hand. involves the atomic transition matrix elements

(8) (r)b. = 3p,,x:3s = ,3p,,y3s) = 3p,:z3s for silicon. We estimated these to

be about 0.66 A using the Slater type Si 3s and 3p orbitals with the effective core

charge 4.15 e.L- 1 This value has been adopted for our numerical calculations. The value

found from the experimental data'24- on the transition oscillator strengths for Si III is

0.46 A, in which case the Slater orbitals give 0.57 A, thus verifying our estimate to be

reasonable.

The relative importance of these two terms depends on the nature of the system,

i.e.. the detailed electronic structure. Usually (see, e.g., Ref. 22), the strong nonlinear

optical response of polymers is interpreted in terms of the molecular displacement po-

larization through delocalized 7" electrons without a quantitative justification. However,

this interpretation may not be always so obvious, especially in the case of small semi-

conductor clusters. We carried out numerical calculations which showed that when the

second term in Eq. (7) is neglected, the linear optical responses decrease typically by

20 percent, while nonlinear polarizabilities in some cases become several times smaller.

We verified that it is the interference of the two terms considered that gives the major

contribution to hyperpolarizabilities in many cases.

To find the optical responses of the clusters, we use density matrix techniques.

However, rather than the conventional many-electron matrix,[2,27] we employ the one-

electron density matrix, which exactly takes into account the Fermi statistics of elec-

trons. The one-electron density matrix is defined as Ppq = (atap), where at and a

are the Fermi creation and annihilation operators in the one-electron states q) and 1p),

respectively, and K...) denotes quantum-mechanical (and statistical) average over the
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state of the cluster.

The Hiamiltonian of the electrons is now

H V _paa - \-" IPq(t)apaq ,

p pq

where the matrix element of the interaction between an electron and the electromagnetic

field has the form

11',q(t) = -e S-'(r)pqE(w)e -w . (10)

the the matrix element (r)pq is given by Eq. (7), and E(w) is the electric field of the

exciting wave at the frequency w and E*( ) = E(-w).

The equation of motion for pp. can readily be obtained by commutation of a ap with

the Hamiltonian using the Fermi anticommutation relations between the operators at

and a as

apO= le + V(t),p] - ih[r,p]+, (11)

where the energy E, relaxation matrix r and interaction V are operators in the space

of the one-electron states, IF is supposed to be diagonalized together with S, and F

denotes the anticoimnutator.

The differential operator equation (11) can be transformed into the equivalent inte-

gral matrix equation

ppq(i) = i I ei(C"-irP)(t'-t)[p(t'), V(t')]pq dt' . (12)

-00

The iterative solution of this equation generates a perturbation series for p of the usual

(0) = (0) (0)
type. To start with, the zeroth-order solution is diagonal, ppq = 6pqpp , where p, =
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0(EF - i,) is the Fermi population factor and EF is the Fermi-level. The n h-order

contribution to the density matrix has the form

nn

PL.... (.......,. exp{- t c, } E 1, 1 E22,...E, . 113)
k=1

where wk. and Eki, are frequencies and amplitudes of the contributing fields. with sum-

mation over recurrent vector indices implied. The positive frequency corresponds to

absorption of photons and negative to emission. The nth-order polarizability is

(n) (f; , r p (n, ,)P
C..ii...... , ... p ) e . .V) -

(14)

-permutations of all pairs (. i), .... (. i )

with the resulting (generated) frequency = - =

The perturbation series for a(n) is conveniently represented by means of double

Feynman diagrams. For example, one of the second-order contributions to a( 2 ) is given

by

(wi )ISf (7'k)pr_(ri ),q(rj )qp (0)

k)) Z-- = .(-d - Wqr -irqr)(wi - ,%. --irp.)PP (15)

Here one can trace the diagrammatic rules. Horizontal lines correspond to one-electron

states over which summation is implied. These lines are separated by vertices, and the

vertex between the lower p and q lines corresponds to -e(r)qp, and between the upper r

and p lines to e(r)pr. The vertical lines connecting the states r and q denote one-electron

propagators i-W1 - Wqr - IFqrj , where v"-'k is the sum of all photon frequencies to
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the right of the propagator. = q - -.,'h is the transition frequencv between
,0)

the one-electron states. and the free p lines denote p. A pass along the diagram

goes from right to left along the lower line and back to the right along the upper line.

The present diagrammatic technique is similar to the conventional one.(26.27: with the

difference that here all the operators and states are one-electron ones. Contributions of

all many-electron states, which appear in the many-electron techniques. either reduce

to those of one-electron states or cancel due to the Fermi statistics of electrons.

The (hyper)polarizabilitv tensor a l(n)...,. is the sum of all different

nth-order diagrams, including the permutations of photons. As an example. we give the

explicit expression for the second-order polanizability,

(t2)tO

ot(ijk1 l ,w"2) -

P - (O (ri)pr(rj)rq(rk)qp + (rj)pr(r"),q(rj)qp

S(- -~ ,.p r-rip)(W;2 - Wqp +- irqp) (-s, - u.p qp -,, rqp)

+ ~ + (rk)pr(rj)rq(ri)qp + + (rj )p,(rkj),q'ri)qp +i~

where 2 = -(w + w2 ). The third-order polarizability is given by 48 diagrams. The

different diagrams were written in the computer code in the form of the permutations of

one basic diagram relevant to the order n. The CPU time on VAX 6420 for computation

of one component of the third-order polarizability is on the order of an hour depending

on the cluster size, whereas it is only minutes and seconds for the second- and first-order

11



cases. respectively. This increase in the CPU time is due to the multiple sum over all

(occupied and unoccupied) one-electron levels.

The (hvper)polarizabilitv tensor aI, n :w,.... ;,) has trivial permutation sym-

metry: all frequencies. except for the frequency of the resulting field. can be permuted

together with the corresponding pola.rization indices. Kleinman's conjecture8l states

that the permutation symmetry is also valid for (i2. i) of the resulting field. This con-

jecture allows one to greatly reduce the number of independent elements of the po-

(n)larizability tensor aii ... , in the the degenerate cases when the resulting frequency Q

coincides with some of the exciting frequencies wk. In particular. the static polarizability

a L (0, 0.... 0) should be a completely symmetric tensor over all the indices i. i, i,.o~ii. --. ,0.. 0) shul be a cmltlsymtiteorvralthincs .... in

We show here, however, that Kleinman's conjecture does not hold in degenerate cases,

particularly, if any of the exciting frequencies wi, or the sum of any of these frequencies,

is zero or much less in modulus than the relaxation rates r. This conclusion is confirmed

by the numerical results in Sec. 3. The violation of Kleinman's conjecture has, to the

best of our knowledge, never been noticed before in the literature.

Let us start from the second-order polarizability (16). Usually, Kleinman's conjecture

is provenj26' by assuming that none of the frequencies wk or their sums coincide with any

of the transition frequencies wpq. In this case, the small relaxation constants F in (16)

could be neglected, and the resulting expression explicitly obeys Kleinman's symmetry.

The reason why Kleinman's conjecture fails is very simple and of general validity. In

the case of the second-order polarizability, the system should be noncentrosymmetric.

As a result, there are always matrix elements (r)p, between the states p and q with

identical energies. In particular, there exist diagonal matrix elements (r)pp. Apart from
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the latter. the coordinate operator r also connects states which are time-reversed with

respect to each other and. consequently, have coinciding energies in the absence of an

external magnetic field in accord with Kramers's theorem. Such states belong to two-

dimensional representations (E) of the point group of the system. Hence. in Eq. (16)

there are always propagators whose real parts become small if any of the frequencies

Q, wl, and w2 are small compared to F. Therefore, one cannot neglect the relaxation

constants r, and the expression (16) is not symmetric with respect to permutation of

(11. i) with (wi.j) or (w2 , k). In particular. the static hyperpolarizability a,, is

not a completely symmetric tensor.

The asymmetric part of the static polarizability can be easily found from (16) and

written as

(2"")aF r ri i _ .

V(~ = P [3 S(rk~r'r r r ri LP(P,, -~rpr-qrqp) (17)
pq

where the index fi stands for any state coinciding in energy with p, and in the summation

q #:A . Note that this expression depends only on ratios of the the relaxation constants

and not on the constants themselves, hence being regular when rP,q - 0. It is obvious

from (16) that, unlike the static limit, in the quasistatic region, i.e., when F < W1 ,2 i <

CF/h, the relaxation constants can be neglected and Kleinman's conjecture holds.

The higher even-order polarizabilities can be considered in a similar way. It can be

shown that for odd-order hyperpolarizabilities. Kleinman's conjecture fails irrespective

of the existence of a center of symmetry.
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3. NUMERICAL RESULTS FOR STRUCTURE AND OPTICAL

PROPERTIES CF THE CLUSTERS

We consider various geometries of Sil 0 clusters, as discussed in Ref. 17 and shown in

Fig. 1. Of the possible BTA related structures.6'71 we include only the most stable form.

DBTA-I, which also has the largest band gap. We also include SiT and Sil 3 clusters in

"pentagonal geometry" as suggested in Refs. 11, 12 and 14. and shown in Fig. 1. The

geometries of all these clusters were determined by maximizing the cohesion energy in

Eq. (6). The resulting electronic structure data and the corresponding point groups

of symmetry are given in Table 1. Note that none of the point groups listed, except

'h, possesses a center of symmetry. The coordinate system with respect to clusters is

positioned in such a way that in the cases of the point groups C2 ,, C 3 ,, and Dsh, the

z-axis coincides with the rotational axes, and one of the mirror planes coincide with

the yz-coordinate plane; for the Td group, the mirror four-fold axes are parallel to the

coordinate axes. Below we shall refer to the clusters considered by simply indicating

their point groups. We shall not discuss the spectra of one-electron levels since they

were already described in d",tails in Ref. 11.

Let us proceed to the optical (dielectric) properties and consider first the static dipole

moments d of the clusters. For the cases of the Dsh, Td and 1h clusters, d = 0, and

for the clusters C2,, and C3,, the values d, are 8.5 and -8.3 D, with other components

being zero.

Proceeding to the linear polarizability acj(w) =j(- 'w), tbe aj tensor is diag-

onal in all cases. For the nonresonant conditions, Rea determines light scattering and

14



Ima vanishes. The calculated nonzero components of Rea.j are shown in the Table 2.

They agree with the rough estimate aj - R0N = 90 x 10-24 cm3 to 170 / 10- 24 cm 3

for the clusters considered. where R0 - 2.5 A is the bond length and N is the number

of atoms. This estimate is valid for the nonresonant frequencies. for which f - 1 - 1.

where e is the dielectric constant of the cluster material.

The absorption cross-sections of the clusters. o, = (47r/3)k Imaii, where k = 27r/A

is the wavevector of light, are shown in Fig. 2. To calculate the absorption we had

to specify the relaxation constants arbitrarily as F = 5 x 10 3 eV. which qualitatively

corresponds to vibration broadening or relaxation on the order of 1 0 13 s - 1. In turn. the

relative heights of the absorption peaks in Fig. 2 correctly reproduce the distribution of

oscillator strengths for the electronic transitions, while the absolute value of the cross-

section is only a rough estimate. As one can see from Fig. 2, the optical absorption

in the visible and near-UV regions depends strongly on the symmetry of the clusters.

The qualitative conclusion is that the higher the symmetry (in the qualitative order

C2,, < C3 , < Dsh < Td, Ih), the smaller the number of lines observed in the the

absorption spectrum, and the greater line shift toward the UV region. This originates

from the fact that in the case of higher syrrmetry, there exist more selection rules, and

fewer transitions are allowed. It is necessary to note, however, that we take into account

only purely electronic transitions, and allowing for the phonon-electron coupling would

bring about the appearance of electronically-forbidden lines in the spectra. In Sec. 4

we shall suggest experiments to directly measure the absorption cross-section of single

clusters.

Let us proceed to the second-order hyperpolarizability, which is usually denoted as
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jW;- (-(wi - 1 -'2. This quantity is known to be highly structure-

dependent. For the centrosymmetric 1h clusters. obviously, 3 = 0. It can be shown

that 3 vanishes also for the noncentrosvmmetric D.sh clusters. This is a consequence of

two symmetry operations: reflection in the xy-plane ensures that number of z-indices

of 3 ijk should be even: simultaneously, the rotation symmetry around the 5-fold axs

forbids tensors in the xy-plane with an odd order n < 5. This consideration leads also to

selection rules for the third-order polarizability (see below). For the symmetry-allowed

cases from (16), one can get an order of magnitude estimate of 3 -- ck(eLo/ hAw), where

A¢o is the detuning of the exciting radiation from the absorption edge of the cluster.

and L0 is a characteristic length of the charge delocalization. Using a = 10- 22 cm' (cf.

Table 2) and L 0 = R0 = 2.5 x 10' cm, haw = 1 eV, one gets 3 _t 7 x 10 - 28 esu.

This estimate is an upper one, since it is assumed that all the atoms, which give rise

to linear polarizability, also contribute to /3. Indeed, the centrosynmetric part of the

polarizability cancels from /3. In fact, the magnitude of /3 - 10 - 27 esu is considered

high, and is characteristic of organic dyes near the resonant (absorption) edge.[29]

The calculated values of all independent components of .3ijk together with the

symmetry-determined relations between different components are summarized in Ta-

ble 3. All of these relations have been confirmed by direct numerical calculations to be

correct with error less than one percent with regard to allowed elements, the precision

being consistent with the deviation from the exact symmetry of the cluster geometries

obtained. The data are given for hyprpolarizabilities h3ijk(W,W) and i3,k(-W-,,) gov-

erning two important physical effects: second-harmonic generation (SHG) and optical

rectification.L261 For the sake of brevity, we skip the data for 3 ik(0,,W) which determines
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the Pockels effect. Though Kleinman's conjecture does not hold for degenerate cases

(see Sec. 2 and below), with a precision within 30 percent. one can nevertheless estimate

As we can see from Table 3, the magnitude of 3 strongly depends on the symmetry:

all the clusters listed contain the same number N = 10 atoms, but maximum elements

of 3 differ several times, the most symmetric Td cluster being the least efficient with

respect to the second-order nonlinearity. The maximum matrix elements of 3 are of the

order of 1028 to 10- 27 esu. Thus, the nonlinearity proved to be high.

Let us discuss the dispersion (frequency dependence) of 3. First note that there exists

an appreciable difference between the static case, W1,2 = 0, and the quasistatic case, 0 <

wl,2 = 10- ' eV « hr (see Sec. 2). Thus, the dispersion in the region of the relaxation

frequencies, w r, is rather strong (practically, this region can belong to an IR or

far-IR band). This fact is due to the existence of the diagonal (in energy) dipole matrix

elements and is intimately coupled to a violation of Kleinman's conjecture. Between

the relaxation region and electronic absorption region, i.e., for hr < hw < 0.5 eV,

the dispersion is rather weak. Strong dispersion corresponds to an interband transition

with frequency w. = Eg/., where e. is the HOMO-LUMO energy gap. In the case of

SHG, the long-wave dispersion is due to the two-photon resonance, W Wgi2. The

rectification and Pockels effects begin to be strongly dispersive at w - w due to the

single-photon resonance.

Using Table 3, one can easily trace violation of the Kleinman's conjecture. For the Td

symmetry, Kleinman's conjecture is superceded by the group-symmetry and is therefore
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valid. But in the case of the C,, and C3,. clusters, it yields the nontrivial prediction

for w1.2 = 0 that 3:.,, = 3ZZ and 3-Y = 3YY which, clearly, is not the case. We

have explicitly checked that this violation is due to the existence of matrix elements

of r between the states with coinciding energies. When such elements are excluded.

Kleiniman's symmetry is restored but the point-group symmetry is broken.

Let us proceed to the third-order hyperpolarizability "ijk(w, W2,3) (

0w2 -! L3); L-, W2 -13). For different sets of {w1,2,3 }, the tensor ijkl governs various physi-

cal effects. In Table 4 we present the numerical data comprising the following cases. The

hyperpolarizability (w,-w. ) determines such important effects as phase conjugation

of light waves, nonlinear corrections to the refraction index and, consequently, self-

focusing and optical bistability, optical-frequency Kerr effect, etc. The tensor -Y(w. 0. w)

governs quasi-SHG, i.e., the generation of the second-harmonic in the presence of a

static electric field, and the hyperpolarizability -y(O, w, 0) is the electro-optical tensor

describing the static Kerr effect. For all the cases indicated, the exciting-radiation fre-

quency is that of the Nd:YAG laser, hw = 1.17 eV or A = 1.064 Am. We omit the data

for -,(w, w, w), since in this case the resulting third-harmonic frequency 3w is within the

region of strong linear absorption of clusters and, therefore, is of less practical interest.

In Table 4 we give values of all nonzero components of the tensor -y and the symmetry-

based equalities between these components. For the C,, and Td clusters, the elements

of -f shown in different lines of Table 4 are independent. It can be verified that for the

other clusters, there exist linear relations: - = 2 ±zyy -,y, and similarly for

Yyy. The 1h cluster has symmetry with respect to permutation of x. y and z, which

implies similar relations also for y :.. The relations mentioned are satisfied by the data
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of Table 4 with good accuracy.

The numerical results suggest that the magnitude of the third-order hyperpolariz-

ability depends primarily on cluster symmetry and to a lesser degree on the number

of atoms. Comparing the data for different clusters, we conclude that the maximum

magnitude of -y is predicted for the low-symmetry C 2, and C3, clusters. The same clus-

ters possess a strong rectification effect (see Table 3), that suggests an essential role of

optical rectification. The latter effect. like charge transfer, brings about the generation

of strong static electric fields inside the cluster in response to optical excitation leading

to nonlinearity of optical response. Such a mechanism is well known to contribute to

large optical nonlinearities of noncentrosyrnmetric organic molecules, see. e.g., Ref. 29.

In the same manner as above for /3, one can estimate the expected magnitude

- -" a(eLo/hAw)2 = 6 x 10" esu, where the same numerical parameters are used.

Comparing this estimate to the data of Table 4, we can conclude that for the low-

symmetry clusters C2 ,, and C3 , the leading elements of -f essentially exceed this esti-

mate, thus revealing high third-order optical responses of these clusters.

Finally, let us discuss the violation of Kleinman's conjecture for the third-order

case. The nontrivial (not superceded by the geometrical symmetry) predictions for

the considered combinations of frequencies can be obtained for C2 ,, C3 ,, and D5h, in

particular, 3'zzz = "Y-zz, yzzyy = Y'yzz, etc. These relations are obviously violated (see

Table 4). It can be shown that for the weakly nondegenerate hyperpolarizability of the

CARS-type -y(w, - .,), where F < A < rF/h, Kieinman's conjecture holds.
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4. DISCUSSION

The main purpose of this work is to evaluate the electronic contributions to the

linear and nonlinear optical properties of small silicon clusters, and also to stimulate

experimental studies of small semiconductor clusters with some relevant suggestions.

Furthermore, the applicability of the TB method to such calculations can be tested

through comparison with (future) experiments and with independent calculations to be

done by other methods.

The present semiempirica TB model has been successfully used to predict the

structures[1 7 '18] and chemical properties ,1" of silicon clusters in the previous works of

some of the authors. A semiempirical method with parameters which are fitted to exper-

iments offers an accurate but simple approach to electronic structure for large systems,

for which ab initio methods are not tractable and may not give sufficient accuracy.1 i ]

Also, we have found the possibility to minimize the geometry without any a priori

symmetry essential for small silicon clusters.[17]

The applicability of the TB method to describe the optical properties of small silicon

clusters is based on the following qualitative arguments. The optical polarizabilities are

determined by the electronic structure (positions of the one-electron levels and the

matrix elements of dipole transitions between them) and geometry of the clusters. As

it was emphasized above, the TB method proved to be successful in the determination

of the cluster geometry. On the other hand, its parameters are fitted to correctly

reproduce the electronic band structure of bulk silicon. Also, it was showni171 that

they correctly describe the HOMO-LUMO band gap in Sil 0 clusters. Thus, the TB
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method is plausible to reproduce positions of one-electron levels. Although the basis

set is small, we emphasize that radial forms of the basis functions are not restricted

by any explicit dependence. Only the second term in the expression (7) for the dipole

moment is estimated using Slater functions. but the results are not sensitive to the

specific magnitude of this term: even if this term is completely neglected. the results

remain qualitatively the same.

The off-resonance linear polarizability a in Table 2 is determined mainly by the

number of atoms N in the cluster and is comparatively insensitive to the structure of

the cluster. It obeys the simple estimate a _ N(2.5A) 3 . In contrast, the absorption

spectra of the clusters in Fig. 2 strongly depend on the cluster symmetry. Therefore,

experimental study of these spectra can give important structural information, and it

may appear to be important in the identification of the cluster structures, which have

not been established yet.

The most attractive experimental approach to study optical properties of small clus-

ters would seem to be through the spectroscopy of cluster beams or clusters in low-

density vapors. The absorption spectrum of a single cluster, i.e., imaginary part of

the polarizability, can be measured in a comparatively simple experiment using pho-

toionization techniques and mass spectrometry. We suggest the following experiment.

The probe radiation in the visible or near-IR region from a tunable laser excites clus-

ters which are also subject to high-power IR radiation with longer wavelength. The

frequency of the latter should be lower than eg/h. Thus, linear absorption of the high-

power radiation by the clusters in the ground state is impossible. But once the cluster is

excited by the probe radiation, the further step-wise excitation by the high-power radi-
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ation is possible and would cause ionization oi Lhe cluster with efficiency which may be

close to 100 percent. The ionized clusters are detected by a mass spectrometer. In such

an experimental arrangement. the amount of ions of a given mass recorded by the mass

spectrometer is proportional to the absorption cross-section of the initial (non-ionized)

clusters. A good candidate for the light source in these experiments is Nd:YAG laser (A

= 1.064 ptm); its fundamental harmonic can serve as the IR radiation, and the second

or third harmonic can be used to simultaneously pump the tunable dye laser.

Recently, a similar experiment 30' was performed in which the dissociation cross-

sections of small II-V semiconductor clusters have been measured using the photodis-

sociation techniques combined with the mass spectrometry. The information on the

absorption spectra was obtained in an indirect way by comparison of the obtained

cross-sections to the theory. Note that, in principle, the real part of the linear polar-

izability of single clusters can also be measured by recording the laser light scattering

but, as mentioned above, this quantity is not informative.

Let us discuss the obtained results on nonlinear polarizabilities. The nonlinear op-

tical responses found above govern various coherent (parametric) processes, such as

SHG, Pockels effect, phase conjugation, Kerr effect and nonlinear corrections to the

ref,'action index, etc. Such noncoherent nonlinear effects as two- and three-photon ab-

sorption, which are determined by the imaginary parts of the third- and fifth-order

polarizabilities, will be considered elsewhere. The hyperpolarizabilities should obey

symmetry-determined selection rules and relations between their different tensor com-

ponents. All the symmetry-allowed components of the considered hyperpolarizabilities.,

together with the corresponding mutual relations, are summarized in Tables 3 and 4.
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The symmetry rules and relations are either known from the literature (see. e.g., Ref. 26)

or were obtained bv symmetry analysis. Since the clusters obtained from the TB cal-

culations obey the corresponding symmetries (see Table 1) with high accuracy and the

used diagrammatic formulas are. in principle, exact, the hyperpolarizabilities obtained

obey the symmetry-based predictions with negligible errors. This fact has been con-

firmed by computing all components of the second-order polarizabilities and most of

the components of the third-order polarizabilities.

Beside the above discussed geometric symmetries. the hyperpolarizabilities also obey

permutation symmetry: any two of the exciting-field frequencies may be exchanged to-

gether with the corresponding polarization indices. This symmetry greatly reduces the

number of the independent tensor components and is taken into account in Tables 3 and

4. The well-known Kleinman's conjecture also allows the resulting field to be included

in the permutation symmetry. For the practically important case of degenerate pro-

cesses, where the resulting frequency coincides with some of the exciting frequencies,

Kleinman's conjecture might allow one to further reduce the amount of independent

components. However, we have shown in Sec. 2 that in the degenerate case the Klein-

man's conjecture is violated, although it holds for nearly-degenerate cases. when the

difference between some of the exciting frequencies and the resulting frequency is much

greater than the relaxation rate F but much less than the characteristic electron fre-

quency. This result is of general validity. For the clusters considered here it has also

been confirmed by numerical results.

The magnitudes of nonlinear responses depend on various qualitative factors among

which we should mention the symmetry of clusters, number of atoms N in the cluster,
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HOMO-LUMO band gap S and delocalization of the cluster orbitals. The explicit

dependence of the nth-order poiarizability on Eg for the near-resonant region is given

by a simple estimate (see also Sec. 3): a"' -- c(eLo,( ,m - a-))ti where c, is the

largest of the exciting frequencies. Note that a c< N. Thus, the smaller rg and the

larger n are, the larger is the hyperpolarizability of the cluster. It is intuitively clear

that strong delocalization of orbitals may bring about an additional enhancement of

optical nonlinearities, the main reason being the increase of the transition dipole matrix

elements. This conjecture is often found in the literature. 21,261

As was already emphasized in Sec. 3. the obtained numerical results in Table 4 show

that the symmetry of the clusters, and not the number of atoms (N = 7 - 10), is the

most essential factor which determines the magnitude of the hyperpolarizabilities. In

this respect, the small clusters differ from large clusters and quantum microstructures.

The second-order polarizability 03 (see Table 3) is the quantity which is known to

depend most strongly on the structure of the cluster. The second-order nonlinearity is

trivially forbidden for the centrosymmetric 1h cluster, but it is also forbidden for the

Dsh cluster, which does not have a center of symmetry. The magnitudes found for the

leading (largest) elements of 3 are qualitatively the same for the lower-symmetry C2,,

and C3 v clusters and are considerably less for the higher symmetry Td cluster. Note that

these clusters contain the same number of atoms, N = 10. The gap e. is substantially

smaller for the C2, cluster than for the other clusters (see Table 1). Hence, there should

exist a factor which compensates for the effect of Eg. Such a factor appears to be a

small deviation of the C2,, cluster from the higher symmetry: this cluster is obtained as

the result of the Jahn-Teller distortion of the D4d cluster, for which the second-order
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nonlinearity is symmetry-forbidden.

The third-order nonlinearity is always allowed, independent of symmetry. But like

in the case of second-order nonlinearity, the highest responses are found for the lower-

symmetry clusters C2, and C31, (see Table 4). For these clusters, the magnitude of the

corresponding hyperpolarizability, y - 10 -' esu. exceeds by an order of magnitude

the maimum estimate (see Sec. 3). It is intuitively clear that the higher the symmetry,

the more pronounced may be the delocalization. If so, the effect of delocalization for

the considered systems is not substantial. This preliminary conclusion will be tested

quantitatively elsewhere. The aggregate of ther otanea data suggests that the most

essential factor for the third-ordei nonlinearity in small Si clusters is the symmetry.

The enhancement of the nonliLcarity "_ the case of low symmetry may be attributed to

optical rectification (charge transfer).

The strong dependence of the polarizabilities on the cluster symmetry is intimately

related to the fact that they precisely obey all the symmetry-based selection rules and

relations (see above). In particular, for some of the clusters, the second-order polarizabil-

ities simply vanish. For these clusters, the contribution to the third-order polarizability

of the static fields, which appear due to the optical rectification effect, is absent. This

may partly explain the relatively low third-order polarizabilities of the clusters men-

tioned. Aaother example of the direct relation between symmetry and the magnitude

of a (2 ) for the C2, cluster was considered above. These arguments allow us to consider

the strong symmetry dependence to be a general feature of small clusters, which is cor-

rectly reproduced by the TB model, and it is not a consequence of, e.g., a limited basis

set.
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Since the the optical nonlinearities of the small Si clusters are found to be high.

these clusters are promising candidates for making efficient nonlinear optical composite

materials. A major problem in this regard is accumulation of the clusters on substrates

(surfaces) or in host media where, as the latter. zeolites' Is deserve attention. The second-

order nonlinearities may be recorded for aligned clusters on substrates or in crystal

matrices, and the third-order for clusters with arbitrary orientation in all media or in

dense vapors.
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APPENDIX: Partial sum rule for dipole transitions

We show here that the first term in right-hand side of Eq. (7) equals zero in a case

where overlap of atomic wavefunctions can be neglected. while the multipole interaction

may be arbitrarily strong. To begin, we note that the two terms in Eq. (7) can be

presented as matrix elements of the two operators R and Sr. defined in the shifted

atomic basis

r = R -r' br: KI'bR!a = SAMabRM, 'g'blbriag) = 6,S(r)ba (A.1)

From the above definition one can easily see that the operators R and br commute

mutually and with r and, consequently, in the coordinate representation both are func-

tions of r. Then we shall follow the familiar derivation of the Thomas-Reiche-Kuhn sum

rule. If the Hamiltonian H does not contain a velocity-dependent interaction, we can

easily find the double commutator

[[H,RR] = a R) 2  (A.2)

where m is the electron mass. Averaging (A.2) over the ground state ig), we obtain

Z= h Z C; bC ,g J (r)[- R(r - R,)]p (r)dr (A.3)
P Mab

The sum rule (A.3) is exact and does not depend on the overlap of the atomic

wavefunctions. Now we invoke the no-overlap assumption, whereby the function R(r)

in Eq. (A.1) can easily be found explicitly: R = R, when r belongs to the space

occupied by the y-th atom. It is obvious that in (A.3) the function R(r) is constant
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in the region where the atomic wavefunctions , p,,(r) are not zero. It means that the

right side of Eq. (A.3) vanishes. Since S, - > 0. we arrive at the conclusion that the

operator R(r) as a whole is zero. In such a way, if one neglects the overlap of the atomic

wavefunctions in a regular way (beginning from determination of the eigenstates), then

the C-coefficients in Eq. (7) interfere in such a way that they cancel the first term.
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TABLE 1. Electronic structure data for the Si7 . Sil 0 and Si, 3 clusters. The names

are from Ref. 17. Eoh is the cohesion energy per atom. and the HONMO-LUMO "band

gap" :1 is given both in the energy and wavelength units.

Name N Point group E,.h Coordination

(eV/atom) (eV. jm) min. max. av.

7 D5h 3.8 1.8 0.69 4 6 4.6

DBTA-I 10 C2,, 4.0 1.4 0.87 4 7 5.0

TTP 10 C3. 3.9 2.6 0.48 3 6 4.8

TO 10 Td 3.6 2.9 0.43 3 6 4.8

13 Ih 4.4 2.8 0.44 6 12 6.7
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TABLE 2. Linear polarizabilities aij(.,) of the clusters in units of 10-23 cm 3 for

different photon energies (in eV) and wavelengths (in um).

hw 0.0 0.5 1.0 1.77 1.5 2.33 (eV)

A 1.064 0.532 (am)

N i

Dsh xx.yy 8 8 8 9 9 15

zz 6 6 7 7 7 11

In) C 2" XZ 11 12 14 16 38 3

yy 10 11 11 12 15 8

zz 14 14 16 18 43 13

10 C3,, XX, yy 12 12 13 13 14 24

zz 13 13 14 14 15 24

10 Td x. ,yy, z 13 13 14 14 15 20

13 Ih x,yy, zz 14 14 14 15 15 17
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TABLE 3. SHG 3 jk(w. ') = -(-2w:.'. ; and rectification 3,jj(-,.) =

a( 2 )(0; -w.w) of the clusters C',, C 3, and Td in units of 10- 28 esu for different photon

energies (in eV).

a (2) (-2,., ,,. ,.,) (0;- .,)

hU; 0.0 10 - 3  0.5 1.0 1.17 1.5 0.5 1.0 1.17 1.5

N ijk

10 C2,, zzZ -2.9 -2.1 -3.9 5.3 3.9 8.8 -3.6 -8.0 -13.8

ZYY -1.4 -0.9 -1.6 1.4 -0.3 2.1 -1.7 -3.0 -4.2

yyz, yzy -0.9 -0.9 -1.5 8.1 3.5 6.0 -1.1 -2.0 -2.9

zxx 0.2 0.3 0.8 -3.2 -5.1 -2.4 0.2 -0.0 -0.5

xxz, xzz 0.4 0.3 0.7-3.1 6.2 -45.6 0.6 1.6 3.1

10 C 3v zzz 1.8 1.3 1.6 3.7 7.0 31.2 1.9 2.5 2.8 3.9

yzxzyx, :xy, -yyy 0.3 0.3 0.3 0.6 1.0 -4.7 0.3 0.3 0.3 0.4

z... ,zyy 0.8 0.3 0.3 0.4 0.5 -16.0 0.9 1.2 1.4 2.1

xxz,yyz.xz.yzy 0.2 0.3 0.4 0.9 1.7 16.5 0.2 0.3 0.3 0.3

10 Td zyz, xzy,

yxz. yzz,

:zy, yx -0.5 -0.2 -0.3 -0.5 -0.8 3.4 -0.5 -0.6 -0.7 -0.8
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TABLE 4. H yperp olariz abilities a(3 -0 ~3 (~ 12 3  in flunits

1-3esu for the photon energy 1.17 eV (or wavelength 1.064 4im).

7 D5h

- - - -0.8 --0.9 -0.5

X--XXyyyy 0.3 -0.0 0.2

ZZ~X.2Y.z,.- _yyz -0.4 -0.3 -0.2

..,zzx. zyz7P -0.2 -0.4 -0.2

XXz_-,yy:.,XzzX, yzzy -0.2 -0.7 -0.2

.zzyzz-0.2 0.7 0.1

Xz~YYIY~ -YY,YXXY 0.2 -0.0 0.0

XYx,YIyz -0.0 0.0 0.1

continued on next the next page
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TABLE 4 (continued)

10 C2,

zzzz -20.9 -2.1 15.2

XzXX -21.7 2.1 -3.4

yyyy -0.3 -0.8 2.0

zzxx. zxxz -7.8 1.5 -3.0

zzz 3.4 0.7 3.2

zzyy, zyyz -3.4 -0.8 4.9

zyzy -1.6 2.4 4.8

yyzz,yzzy -3.6 -0.4 4.9

yzyz -1.6 -1.1 3.6

yyx.yzxy -2.8 0.2 -1.3

zyXy 3.0 -1.2 1.0

xzzlxzzx -15.6 0.5 -3.0

zzz 3.4 1.1 -0.1

xxyyxyyx -2.6 -0.8 -1.3

yryX 3.0 -1.5 2.3

continued on next the next page
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TABLE 4 (continued)

10 C3 v,

zzz9.3 20.9 3.4

zXzz,yyyy 0.1 3.4 -0.0

::yy, -zyzx. -Zxyx. -zxxy -0.1 -0.5 0.0

yzyy, -yzzx, -zzyx, -izzy,

yyyz, -yzxz, -xxyz, -. ryxz -0.3 -0.9 -0.1

YYZY, -yxzxI -xyzX. -X~zy -0.5 -1.3 -0.6

zzxxl Zzyy, zXzzyyz 0.6 0.5 0.0

zxz:,zyzy 0.1 -0.0 0.2

xrxzzlyyzzlxzzx,yzzy 0.3 1.1 1.8

xzz,yzyz -0.0 -0.5 2.5

zXyy, yyz, zyyz, yzX 0.1 1.3 0.1

xyzYIyzYX -0.2 0.9 -0.2

continued on next the next page
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TABLE 4 (continued)

10 Td

XXXz Yyy, ZZZZ 0.8 1.7 0.6

xxyy, aXzzz. yyX~X yyzz.

zzxx. zzyy,xyyx..xzzx.

yXXY, yzzy, zzxz. zyyz 0.4 0.4 0.2

xyXy,xzx:. yxyz, yzyz,

zxz .zyzy 0.2 -0.1 0.1

continued on next the next page
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TABLE 4 (continued)

13 1-h

xxxx. yyyy, zzzz 3. 7 0.8 1.7

xzyy, xxzz. yyxx. yyzz-.

zzxx.:zyy,zyyx.xzz.

yxxy,yzzy,zxxz~zyyz 2.0 0.3 0.3

xyxy, xzz- ?.-yx, yzyz.

zxzx, zyzy -0.2 0.2 1.2
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FIGURE CAPTIONS

1. Structures of the clusters: (a) Si7 (D5h), (b) Sil 0 :DBTA-I (C 2,), (c)

Sii 0:TTP (C3 ,), (d) Silo:TO (Td) and (e) Si13 (1h).

2. Absorption cross-sections of silicon clusters in the same order as in Fig. 1.
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